

... for a brighter future



A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Argonne

# Summary of On-Board Storage Models and Analyses

R.K. Ahluwalia, T. Q. Hua and J-K Peng Hydrogen Delivery Analysis Meeting FreedomCAR and Fuels Partnership Delivery, Storage and Hydrogen Pathways Tech Teams

> May 8-9, 2007 Columbia, MD

# On-Board Hydrogen Storage System with a Liquid Carrier

Objective: To determine the performance of the on-board system relative to the storage targets (capacity, efficiency, etc)

- 1. On-Board System Configuration
- 2. Dehydrogenation Reactor
  - Dehydrogenation kinetics
  - Trickle bed hydrodynamics
  - Dehydrogenation reactor model
  - Reactor performance with pelletized and supported catalysts
- 3. System Performance
  - Storage efficiency
  - Storage capacity



# Fuel Cell System with H<sub>2</sub> Stored in a Liquid Carrier

- Once-through anode gas system with controlled H<sub>2</sub> utilization
- Burner uses depleted air split-off from spent cathode stream
- Burner exhaust expanded in gas turbine to recover additional power



## Developing & Validating Model for DeH2 Reactor

#### Dehydrogenation kinetics

$$- R_1 = R_2 + 2H_2$$

$$R_2 = R_3 + 2H_2$$

$$R_3 = R_4 + 2H_2$$

- Kinetic constants from batch reactor data, APCI Patent
- 8 g N-ethylcarbazole, 20-cc reactor, 0.2-g 4% Pd on Li aluminate powder catalyst
- Trickle-bed reactor model
  - First-order kinetics with internal & external mass transfer
  - Trickle bed hydrodynamics
  - ODEs for T and species flow
  - TBR data for 5% Pd on alumina catalyst





### Trickle Bed Reactor Hydrodynamics Neural Network Model

| Parameter                                        | Reı      | Re <sub>g</sub> | Fr <sub>I</sub> | $Fr_g$   | Weı      | Xı | Χg | St <sub>I</sub> | Stg      | Scı      | Scg      | Ga <sub>l</sub> | Ca <sub>l</sub> | Ca <sub>g</sub> | Bi       | Pe <sub>l</sub> | Peg      | $\rho_{g,l}$ | α        | $d_{p,r}$ | Φ | ε |
|--------------------------------------------------|----------|-----------------|-----------------|----------|----------|----|----|-----------------|----------|----------|----------|-----------------|-----------------|-----------------|----------|-----------------|----------|--------------|----------|-----------|---|---|
| Slip factors: f <sub>s</sub> , f <sub>v</sub>    | 1        | √               | 1               |          | 1        | 1  |    | 1               |          |          |          |                 |                 |                 |          |                 |          |              |          |           |   |   |
| Ergun constants: E <sub>1</sub> , E <sub>2</sub> |          |                 |                 |          |          |    |    |                 |          |          |          |                 |                 |                 |          |                 |          |              |          | 1         | √ | 1 |
| Liquid-catalyst mass transfer coefficient        | <b>V</b> | 1               |                 |          |          |    |    | <b>V</b>        |          | <b>√</b> |          | <b>√</b>        |                 |                 |          |                 |          |              | 1        |           |   |   |
| Volumetric liquid-side mass transfer coefficient |          | 1               |                 |          | <b>√</b> |    |    | <b>√</b>        | <b>V</b> | <b>√</b> |          |                 | <b>√</b>        | <b>V</b>        |          |                 |          |              | 1        | 1         |   |   |
| Volumetric gas-side mass transfer coefficient    | <b>V</b> | <b>√</b>        |                 | <b>√</b> |          |    |    | <b>√</b>        |          |          | <b>V</b> |                 |                 |                 |          |                 |          |              | <b>V</b> |           |   |   |
| Liquid-wall heat transfer coefficient            | 1        |                 |                 | <b>√</b> | <b>√</b> |    |    | <b>V</b>        |          |          |          |                 |                 |                 |          | <b>√</b>        | <b>√</b> |              |          | <b>√</b>  |   |   |
| Bed radial thermal conductivity                  | 1        |                 |                 | <b>√</b> | <b>√</b> |    |    |                 |          |          |          |                 |                 |                 | <b>√</b> | <b>√</b>        | <b>√</b> |              |          |           |   |   |
| Wetting efficiency                               | 1        | 1               | 1               |          | 1        | 1  | 1  | √               |          |          |          | √               |                 |                 |          |                 |          | √            | 1        | 1         | √ | √ |
| Pressure drop                                    | √        | 1               |                 |          | 1        | 1  |    |                 |          |          |          | 1               |                 |                 |          |                 |          |              | 1        |           |   |   |
| Liquid holdup                                    | √        | 1               |                 |          | 1        |    | 1  |                 |          |          |          |                 |                 |                 |          |                 |          |              | 1        |           |   |   |

Re Reynolds number

Ga Galileo number

d<sub>n</sub> Catalyst diameter d<sub>r</sub> Reactor diameter

Fr Froud number

Ca Capillary number Pe Peclet number

Φ Sphericity factor

We Weber number

Sc Schmidt number

Bi Biot number

ε Void fraction

X Lockhart-Martinelli number

St Stokes number

ρ Density

**Subscripts:** 

α Bed correction factor

I Liquid

**g** Gas

References: Ind. Eng. Chem. Res., 37 (1998), 4542-4550

Ind. Eng. Chem. Res. 42 (2003) 222-242 Chem. Eng. Sci., 54 (1999) 5229-5337



# Conversion with Pelletized Catalysts

#### Reactor Parameters

- Pellet diameter = 3 mm
- Bulk density = 800 kg/m³
- HX tube diameter = 3/8"
- AL 2219-T81 construction

#### Analysis Method

| Variable                   | Constraint                                            |  |  |  |  |  |  |
|----------------------------|-------------------------------------------------------|--|--|--|--|--|--|
| LCH <sub>2</sub> flow rate | 2 g/s <sup>a</sup> H <sub>2</sub> to FCS <sup>b</sup> |  |  |  |  |  |  |
| HTF flow rate              | $\Delta T_f = 5^{\circ}C$                             |  |  |  |  |  |  |
| No. of tubes               | Q = 83 kWc                                            |  |  |  |  |  |  |

<sup>a</sup>3 g/s total H<sub>2</sub> for N-ethylcarbazole <sup>b</sup>100-kWe FCS

c∆H = 51 kJ/mol for N-ethylcarbazol LHSV=volumetric flow rate/reactor volume





# Conversion with Dispersed Catalyst

ANL-IN-07-019

- 40-ppi Al-6101 foam, 92% porosity
  - 50-μm catalyst washcoat, 224 kg/m³ bulk density
- Marked improvement in catalyst effectiveness if supported on foam although the wetting efficiency decreases
  - Trickle flow on foam has not been demonstrated







### Part-Load Performance

- Higher conversion with constant HTF flow rate especially at low loads
- Transient performance
  - Actual conversion on a drive cycle may be higher or lower than the steady-state value
  - Response time
  - Pressure control?
  - Buffer storage?







# Reactor Weight and Volume Distribution

- Total weight of reactor = 23 kg
- HX tubes ~ 2/3<sup>rd</sup> of total weight
  - Larger ΔT (T<sub>HTF</sub> T<sub>R</sub>) for lighter HX at expense of η<sub>ss</sub>
  - Heat transfer augmentation important with more active catalyst

- Total volume of reactor = 53 L
- Possible to trade-off insulation volume with heat loss
  - 110 W heat loss with 2-cm insulation





## Argonne HTCHS: System Analysis

#### **Dehydrogenation Reactor**

- $T_R$  function of P(H<sub>2</sub>), conversion, ΔH, ΔS, and  $\Delta T_{eq}$
- Trickle flow, 20 h<sup>-1</sup> LHSV
- Catalyst supported on 40-PPI foam
- HX tubes with 90° inserts
- AL-2219-T81 alloy, 2.25 SF
- 2 cm insulation thickness

#### **Heat Transfer Fluid**

- XCELTHERM ®
- 5°C  $\Delta$ T in DeH2-HX,  $T_{HTF}$   $T_{R}$  = 50°C

#### **HEX Burner**

- Non-catalytic, spent H<sub>2</sub> and 5% excess spent air
- Counterflow microchannel, inconel
- 100°C approach temperature

#### H<sub>2</sub> Cooler

- LCH2 coolant, T<sub>outlet</sub> = T<sub>FC</sub>
- Counterflow, microchannel, SS

#### Recuperator

- LC/LCH2 HX,  $T_{LCH2} = T_R 10^{\circ}C$
- Counterflow, microchannel, SS

#### **LC Radiator**

- $T_{LC} = 70^{\circ}C$
- Integrated with FCS radiator
- W and V not included in HTCHS

#### LCH<sub>2</sub>/LC Storage Tank

- Single tank design, HPDE construction
- 10% excess volume

#### **Pumps**

- HTF pressure head: 1 bar
- LCH2 pressure head: 8 bar

#### H<sub>2</sub> Separation

Coagulating filter

#### H<sub>2</sub> Buffer Storage

- 20 g H<sub>2</sub> at 80°C, P(H<sub>2</sub>)
- AL-2219-T81 alloy tank, 2.25 SF

#### **Miscellaneous**



# On-Board Storage System Efficiency

- Storage system efficiency defined as fraction of H<sub>2</sub> librated in dehydrogenation reactor that is available for use in fuel cell stack
- Efficiency could be ~100% if  $\Delta H < 40$  kJ/mol and  $T_R < T_{FC}$



- LC: 0.95-1.2 g/cc,5.8 wt% H<sub>2</sub>
- 95% conversion
- DeH<sub>2</sub> LHSV: 20 h<sup>-1</sup>
- $\Delta T_{eq}$ : 50°C
- Burner HX: 100°C approach T
- 2 g/s net H<sub>2</sub> output
- $\blacksquare$  P(H<sub>2</sub>): 8 bar
- 0.8-1.4 kWe HTF pump
- Start-up energy not included



# Reverse Engineering: H<sub>2</sub> Storage Capacity

- System capacity presented in terms of stored H<sub>2</sub>
  - Recoverable H<sub>2</sub>: 95% intrinsic material capacity (conversion)
  - Usable H<sub>2</sub> = Storage system efficiency x Recoverable H<sub>2</sub>
- System capacity with N-ethylcarbazole: 4.4% wt% H<sub>2</sub>, 35 g/L H<sub>2</sub> (H<sub>2</sub> stored basis); 2.8% wt% H<sub>2</sub>, 23 g/L H<sub>2</sub> including losses
  - 95% conversion, 67.7% storage system efficiency



- LC: 0.95-1.2 g/cc
- LC tank: 10% excess volume
- ΔH<sub>2</sub> LHSV: 20 h<sup>-1</sup>
- lacksquare  $\Delta T_{eq}$ : 50°C
- Burner HX: 100°C approach
- 2 g/s net H<sub>2</sub>
- 20-g H<sub>2</sub> buffer
- P( $H_2$ ): 8 bar



# **Preliminary Conclusions**

- 1. Dehydrogenation reactor will need a supported catalyst
  - Desirable to have LHSV > 20 h<sup>-1</sup> for >95% conversion
  - May need  $\Delta T > 50^{\circ}C$  for compact HX ( $\Delta T = T_{HTF} T_{R}$ )
- 2. Need  $\Delta H < 40$  kJ/mol for >90% on-board storage efficiency
- 3. Material capacities to meet system storage targets

|                    | System Capacity <sup>a</sup> |                     |  |  |  |  |
|--------------------|------------------------------|---------------------|--|--|--|--|
| Material Capacity  | Gravimetric                  | Volumetric          |  |  |  |  |
| wt% H <sub>2</sub> | wt% H <sub>2</sub>           | g-H <sub>2</sub> /L |  |  |  |  |
| 5.8                | 4.4                          | 35                  |  |  |  |  |
| 6.0                | 4.5                          | 36                  |  |  |  |  |
| 8.6                | 6.0                          | 48                  |  |  |  |  |
| 14.5               | 9.0                          | 68 <sup>b</sup>     |  |  |  |  |

<sup>&</sup>lt;sup>a</sup>Stored H<sub>2</sub> basis

<sup>&</sup>lt;sup>b</sup>H<sub>2</sub> buffer has to decrease for 81 g/L volumetric capacity



### **Future Work**

Continue to work with DOE contractors and COE to model and analyze various developmental hydrogen storage systems.

#### Metal Hydrides

- Analyze system with the most promising candidate
- Reverse engineering to determine material capacities

#### Carbon Storage

Extend work to carbon and other sorbents

#### Chemical Hydrogen

- Evaluate regeneration energy consumption and fuel cycle efficiency of candidate materials and processes
- Liquid carrier option
  - Validate model with experimental data for more active catalysts
  - Sensitivity study (P, buffer H<sub>2</sub> storage)
  - Extension to the "best" APCI carrier with the "best" APCI catalyst
  - Fuel cycle analysis
  - Collaboration with TIAX on cost analysis



# SBH Regeneration Analysis – Energy Requirements and Efficiencies

- Brown-Schlesinger process requires 4 moles Na per mole of NaBH<sub>4</sub>
- Na recovery is the most energy intensive step in SBH regeneration
- MCEL has demonstrated a laboratory method for recycling Na in a closed loop
  - NaOH and NaBO<sub>2</sub> electrolysis with or without H<sub>2</sub> assist
  - No make-up Na needed (assuming 100% recovery efficiency)



Source: Millennium Cel



# Na Recovery

- H<sub>2</sub>-assisted electrolysis
  - Anhydrous or aqueous NaOH
     3 NaOH + 3/2 H₂ →3 Na + 3 H₂O
  - Aqueous  $NaBO_2$  $NaBO_2 + 1/2 H_2 + H_2O \rightarrow Na + H_3BO_3$
- Electrolysis without H<sub>2</sub> assist
  - Anhydrous or aqueous NaOH
     3 NaOH → 3 Na + 3/4 O<sub>2</sub> + 3/2 H<sub>2</sub>O
  - Aqueous NaBO<sub>2</sub> NaBO<sub>2</sub> + 3/2 H<sub>2</sub>O  $\rightarrow$  Na + 1/4 O<sub>2</sub> + H<sub>3</sub>BO<sub>3</sub>
- Current efficiency ~100% (MCEL)
- Theoretical current efficiency without membrane is 50% (commercial ~40%).



Electrolyzer

## NaOH and NaBO<sub>2</sub> Electrolysis (MCEL)

| Parameters                | Anhydro               | us NaOH    | Aqueou                | ıs NaOH    | Aqueous NaBO <sub>2</sub> |            |  |  |
|---------------------------|-----------------------|------------|-----------------------|------------|---------------------------|------------|--|--|
|                           | H <sub>2</sub> assist | w/o assist | H <sub>2</sub> assist | w/o assist | H <sub>2</sub> assist     | w/o assist |  |  |
| Current efficiency, %     | 100                   | 100        | 100                   | 100        | 100                       | 100        |  |  |
| Voltage efficiency, %     | 90                    | 80         | 72                    | 70         | 70                        | 77         |  |  |
| Overall efficiency, %     | 90                    | 80         | 72                    | 70         | 70                        | 77         |  |  |
| Temperature, °C           | 350                   | 350        | 110                   | 110        | 130                       | 130        |  |  |
| Cell operating voltage, V | 1.3                   | 2.7        | 2.5                   | 4.0        | 2.8                       | 4.0        |  |  |
| Electricity, kwh/kg Na    | 1.5                   | 3.1        | 2.9                   | 4.7        | 3.3                       | 4.7        |  |  |

Data provided by Millennium Cell



## **Brown-Schlesinger Processes**

- SH production
  - React Na with H<sub>2</sub> in mineral oil to form SH
- TMB production
  - Dissolve boric acid in methanol to form TMB solution. TMB is separated by extraction and distillation
- LSBH production
  - React SH with TMB to form SBH and sodium methoxide
  - The product is hydrolyzed to form a solution of SBH, methanol, sodium hydroxide, and water
  - Methanol is distilled off and used in TMB production
- Final product
  - IPA is used to extract SBH from LSBH solution. Water is mixed with dry SBH to the desired SBH concentration



## AnH-AqH: H<sub>2</sub>-Assisted, Anhydrous NaOH/Aqueous NaBO<sub>2</sub>





### AqH-AqH: H<sub>2</sub>-Assisted, Aqueous NaOH/Aqueous NaBO<sub>2</sub>





## An-Aq: w/o H<sub>2</sub> Assist, Anhydrous NaOH/Aqueous NaBO<sub>2</sub>





### Aq-Aq: w/o H<sub>2</sub> Assist, Aqueous NaOH/Aqueous NaBO<sub>2</sub>





# Energy Consumption (50% Heat Integration, U.S. Grid 2015)





# Material Losses in Regeneration Plant

- Sources of Na losses
  - Formation of Na compounds in parallel to SBH in Brown-Schlesinger process
- Sources of CH<sub>3</sub>OH losses
  - Fugitive emissions
  - Vent gases from methanol scrubbers
- Sources of H<sub>3</sub>BO<sub>3</sub> losses
  - Less than 100% yield of azeotrope in TMB production (ex., formation of methyl metaborate)
- Energy consumption to replenish lost materials
  - Na from NaCl electrolysis: 9.1 kWh/kg
  - CH<sub>3</sub>OH from natural gas: 63% efficiency (GREET data)
  - H<sub>3</sub>BO<sub>3</sub> from rxn of inorganic borates with H<sub>2</sub>SO<sub>4</sub>: 6.3 MJ/kg



# SBH Regeneration Efficiency with Closed Brown-Schlesinger Process

- WTE efficiency is 17-23% for H<sub>2</sub>-assisted electrolysis options and 14-19% without H<sub>2</sub> assist.
  - Results based on 2015 U.S. grid 2015 & 80% regen plant thermal efficiency
- Na recovery accounts for 45-80% of total energy consumed in SBH regeneration.
- Loss of material, especially Na, may further reduce the efficiency.



## **Summary and Conclusions**

- Four Na recycling options (NaOH and NaBO<sub>2</sub> electrolysis) for SBH regeneration were analyzed with FCHtool.
- Current efficiency approaches 100% (MCEL data) compared to less than 50% without membrane (industrial process).
- Heat integration within the regeneration plant was varied parametrically.
- Na recovery accounts for 45-80% of the total energy consumed in SBH regeneration.
- The WTE efficiency is 17-23% for H<sub>2</sub>-assisted electrolysis options and 14-19% without H<sub>2</sub> assist.
- Loss of material, especially Na, may further reduce the efficiency by up to a few percentage points.

